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Abstract-A meshless approach to the analysis of arbitrary Kirchhoff shells by the Element-Free
Galerkin (EFG) method is presented. The shell theory used is geometrically exact and can be applied
to deep shells. The method is based on moving least squares approximant. The method is meshless,
which means that the discretization is independent of the geometric subdivision into "finite ele­
ments". The satisfaction of the C' continuity requirements is easily met by EFG since it requires
only C' weights; therefore, it is not necessary to resort to Mindlin-Reissner theory or to devices
such as discrete Kirchhoff theory. The requirements ofconsistency are met by the use ofa polynomial
basis of quadratic or higher order. A subdivision similar to finite elements is used to provide a
background mesh for numerical integration. The essential boundary conditions are enforced by
Lagrange multipliers. Membrane locking, which is due to different approximation order for trans­
verse and membrane displacements, is removed by using larger domains of influence with the
quadratic basis, and by using quartic polynomial basis, which can prevent membrane locking
completely. It is shown on the obstacle course for shells that the present technique performs well.
Published by Elsevier Science Ltd.

1. INTRODUCTION

There is a growing interest in the so-called "meshless" methods, particularly for problems
involving continuous changes in geometry such as dynamic fracture. It might be partly
traced to high costs involved in meshing procedures. These problems involve considerable
remeshing efforts, which can easily constitute the largest portion of analysis costs. Meshless
methods do not require a finite element mesh for the definition of the approximation. The
discretization is based on a set of nodes (ordered or scattered), although a background
mesh may be used for quadrature. The connectivity in terms of node interactions may be
changing constantly, and modelling of fracture, free surfaces, large deformations, etc. is
considerably simplified---ef. Belytschko et al. (1994).

Meshless methods have been proposed in several varieties as Generalized Finite Differ­
ence Method (Liszka (1984)), Smoothed Particle Hydrodynamics (Monaghan (1982)),
Diffuse Element Method (Nayroles (1992)), Wavelet Galerkin Method (e.g. Qian and
Weiss (1993)), Multiquadrics (Kansa (1990)), Reproducing Kernel Particle Methods (Liu
et al. (1995)) and the Element-Free Galerkin Method (Belytschko et al. (1994)).

The Element-Free Galerkin Method (EFGM) is based on a moving least squares
approximation. These approximations originated in scattered data fitting, where it has been
studied under different names (local regression, "loess", and moving least squares) since
the 1920's---ef. Cleveland (1993) and Lancaster and Salkauskas (1986).

The enforcement of essential boundary conditions in the EFGM requires special
treatment, therefore a number of techniques have been proposed such as point collocation,
Lagrange multipliers, and coupling with finite elements. The coupling with finite element
methods seems especially desirable as the computational costs are relatively high for EFG
method due to its dynamic connectivity character (the connectivity, i.e. the interaction of
nodes, is not fixed by input data, it needs to be computed), and it is anticipated that EFG
would be used only where fracture is expected; alternatively a transition from finite elements
to EFG in areas of fracture could be used.
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The goal of the present paper is to develop and study the EFG method for problems
of thin shells-usually denoted as Kirchhoff shells. The problem of constructing C1 finite
elements for shells of general shape has been addressed by many researchers. Although C1

elements have been developed, alternative methodologies which circumvent the continuity
requirement seem to have become predominant in recent years. The most popular CO-type
methods are those based on Mindlin-Reissner shell theory, and the hybrid and mixed
models.

The EFG method offers considerable potential with respect to numerical solutions of
boundary-value problems that require high continuity in the trial functions-Kirchhoff
shell theory being one of them. The continuity of the shape functions is primarily governed
by the continuity of the weight function. Therefore, as it is possible to construct sufficiently
smooth weight functions, the numerical approach is greatly simplified.

An earlier paper by the authors dealt with the EFG method for thin plates. High
performance and insensitivity to grid irregularity have been demonstrated. Numerical
studies to assess the influence of the support size of the weight functions on the accuracy,
and the required quadrature order were presented. These results have been applied in this
study in shell problems.

The outline of the paper is as follows: first, a very short account of the numerical
formulation of the Kirchhoff shell theory is given. The EFG method approximation is then
reviewed: the moving least squares technique, the properties of the EFG approximation,
and the construction of the shape functions. The discretization issues are then discussed:
The surface approximation techniques, surface approximation quality issues, algorithm for
automatic parameterization of the surface, choice ofdisplacement parameters, computation
of the stiffness matrix, and the enforcement of the essential boundary conditions. A dis­
cussion of the choice of the weight function then follows, with some comments on the way
in which the choice ofthe weight function support affects the solution. Next section discusses
the phenomenon of membrane locking, and devices to alleviate it are proposed.

The paper is concluded by a section on numerical experiments. The well-known shell
benchmarks from the shell obstacle course of Belytschko et al. are applied.

2. GOVERNING EQUATIONS

The shells, considered in the present work, are assumed to be thin so that the Kirchhoff­
Love theory can be considered appropriate, and arbitrarily deep with any Gaussian curva­
ture. The formulation of the governing equations used in this report is based on a series of
papers on geometrically exact theory of shear flexible shells by Simo et al.---ef. papers by
Simo and Fox (1989), Simo et al. (1989), and appropriate adjustments were made to
account for the Kirchhoff hypothesis. However, this hypothesis is invoked at the latest
stages to avoid cluttering up the equations.

2.1. Kinematic description ofshell
The Gauss intrinsic coordinates (a normal coordinate chart) are used to describe the

configuration of the shell. The shell in the 3D space is described in a global cartesian
coordinate system Ek • The pair «((', t) defines the position of an arbitrary point of the shell,
((' gives the position of a point on the shell midsurface, and t is a director unit vector
(normal to the shell surface both in the reference and deformed states-the usual Kirchhoff­
Love hypothesis). The configuration !I' (generic state) can be put down as

Here d denotes the parametric space, h-, h+ are the distances of the "lower" and "upper"
surfaces of the shell from the reference surface. Superscript 0 denotes quantities in the
reference configuration, for instance (('0 is a point on the reference surface.

We define the convective basis vectors g/ by the tangent map
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(2)

A contravariant (dual) basis gI can be obtained from the standard relation gI' gJ = <5f. The
determinants of the tangent maps will be denoted subsequently as j and jO respectively
(denoting] and]O the Jacobians on the reference surface)

j = det [Vx], jO = det [Vx°], ] = j I ,jO =] I .
;~o ;~o

The surface differential (a two-form) is defined by

dd = CP.l x CP,2 d~1 de.

(3)

(4)

2.2. Stress resultants and stress couples
To define the stress resultants we introduce a section through the shell at ~a = const.

!f' = {x = x IC~const}, C( = 1,2.

The one-form normal to the section surface for ~l = const is given by

(5)

(6)

The force acting on the section !fl per unit of coordinate length can be therefore written
as (0' being the Cauchy stress tensor)

(7)

and similarly the couple acting on !f1 per unit of coordinate length

(8)

The stress resultants (force n° and couple rn') are normalized RO and T" with respect to the
surface Jacobian]

(9)

(10)

The stress resultant couple can also be expressed as

(11)

The across-the-thickness resultant has been omitted as it does not playa role in the
Kirchhoff~Love theory.
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3. PRINCIPLE OF VIRTUAL WORK

Let us introduce the following kinematic variables (the fundamental forms of the shell
surface) :

(a) 1st fundamental form: a,fJ = rp.,' rp,fJ

(b) 2nd fundamental form: K,fJ = rp.a • t,fJ'

(12)

(13)

The static weak form can be put into the following component form in the effective
resultants

(14)

with the virtual work of the external loading Wex,(Jx) can be expressed as

Wex,(Jx) = L[ii . Jrp +rit 'Jtl dd + L.w Ii 'Jrpds+ L." m' Jtds (15)

where the prescribed distributed force on the boundary and is Ii = navaand the prescribed
torque on the boundary omd is m= m'va. The one-form normal to the boundary (and lying
in the tangent plane to the surface) is denoted as v = varp'.

3.1. Strain measures
The displacement vector is introduced as D = rp - rpo. The linear membrane and bending

strain measures can be derived from the kinematic variables in (12) and (13) in the form

(16)

(17)

where only the symmetric part of the bending strain measure has been considered, as
demonstrated by the indices being enclosed in parentheses.

The Kirchhoff-Love hypothesis needs to be finally introduced explicitly to obtain the
definite forms for the strain measures. The mathematical form of this hypothesis reads

(18)

The implications are, that we can write derivatives and increments of the director in terms
of the covariant basis vectors rp". Straightforward manipulation gives for the derivatives of
the normal vector in the reference configuration e

(19)

Next, the linear part of the increment At = t-tO will be derived. Using the definition (18)
of the normal vector, the following relation can be derived by retaining only terms linear
in D, and by invoking the condition t,,' t = 0 which can be obtained by differentiation of
the relation Iltll = 1

(20)

Similarly to the derivation of eqn (19), we can obtain the relations for partial derivatives
of the increment ~t:
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(21)

The membrane strain measures of eqn (16) are not affected by the introduction of the
Kirchhoff-Love hypothesis. On the other hand the bending strain measures can be rewritten
as

PII = -U,ll "to+(J0)-I[U,1 "(fIJ?1 I XfIJ?2)+U,2"(fIJ?1 X fIJ?l d]'

P22 = - U,22 "to + (J0) -I [u, 1"(fIJ?22 x fIJ?2) + U,2 " (fIJ?1 x fIJ?22)],

PI2 = -~(U,12 +U,21) "to

+~(;o) -I [U,I "«fIJ?12 + fIJ?21) x fIJ?2) + U,2 " (fIJ?1 X (fIJ?12 + fIJ?21)))' (22)

Using the symmetry with respect to partial differentiation, fIJ?12 = fIJ?21 and U,12 = U,21> the
third equation of (22) can be simplified to

(23)

3.2, Constitutive equations
Let us consider only the simplest form of constitutive equations, namely the isotropic

elasticity. If both the effective stress resultants and the linearized strain measures are
arranged in vectors, we can write the isotropic hyperelasticity in matrix form

where the matrix C is given as

(24)

C=

symm

(
vaOlla022+ )

(1- v)(aO I2 f
(a0 22 )2 (25)

with ao.f! as the components of the first fundamental form in the dual basis.

4, MOVING LEAST SQUARES TECHNIQUE

The Element-Free Galerkin method uses the moving least-squares approximation
(MLS) to construct the numerical discretization and also the surface shape approximation.
The MLS have been used in statistics under the name of "loess" (local regression) to fit
curves or surfaces to scattered data since the 1920's-cf, details in Cleveland (1993) and
references therein.

The starting point of the Element-Free Galerkin method (EFGM) is the following
equation, which approximates a function u(x) in a small neighbourhood of x by a (seem­
ingly) polynomial expansion (actually, the approximation is much more complicated; for
instance, it is rational when a polynomial weight function is used) :
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U(X) = pj(x)aj(x), j = 1, ... , n (26)

The polynomial basis pix) is known, the unknown coefficients aix) are solved for by the
moving least-squares procedure using prescribed values UI at nodal points Xl> I = 1, ... , M.
As is well known, the approximation (26) must be at least quadratic when applied to fourth­
order problems (see e.g. Strang and Fix (1973». The reason is, that the governing weak
form contains second-order derivatives, so that a quadratic polynomial must be represented
exactly by (26), for the purpose of consistency. Although (26) is in general of degree
higher than that ofpix), the above requirement should hold for the choice aix) = const.
Consequently, the MLS approximation with a quadratic basis will represent a quadratic
polynomial exactly. The polynomial basis adopted in this work was (i) quadratic, i.e. the
"minimal" basis, and (ii) quartic, which was used to remove membrane locking as discussed
in Section 13:

(i) {Pj(x)V = {1,x,y,x2,xy,y2V, (n = 6),

(ii) {Pj(x)V = {1,x,y,x2,xy,y2,x3,x2y,xy2,y3,x4,x3y,x2y2,xy3,y4}T, (n = 15).

(27)

Note, that for the actual calculations the argument x should be replaced by simple linear
transformation x = x - Xorig to shift the origin to the evaluation point. Otherwise, a loss of
accuracy follows from the absolute values of x being too large.

The moving least-squares technique consists in minimizing the weighted L 2 norm

M

J= L w(x-x/)[pix /)aj (x)-u/]2,
/~ I

(28)

where w(x - Xi) is a weight function ofcompact support (often called the domain ofinfluence
of node i).

This yields the following linear system of equations for the coefficients aj:

(29)

where M is the number of EFG nodes whose domain of influence includes x, and

M

[A(x)L = L w(X-Xm)Pi(Xm)Pj(xm),
m=l

The eqn (26) can thus be put into standard form

with 4>lx) being the shape functions

4>Ax) = pAA(x) -I • B(x)]jI'

(30)

(31)

The continuity of the shape function 4>lx) is governed by the continuity of the basis
functions Pj' and by the smoothness of the matrices A(x) -1 and B(x). The latter is governed
by the smoothness of the weight function.



Analysis of thin shells

5. DESCRIPTION OF THE SHELL SURFACE
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The present methodology is targeted at general shells. It means that we have to deal
with the issue of surface shape approximation. The shapes that we need to consider here
are free-form surfaces, as only these are general enough. To approximate the shape of the
shell the moving-least squares technique is applied to fit the approximate surface to a
collection of scattered data points. It should be noted that the requirements posed on the
approximate surface are governed here by the desired mechanical properties of the surface.
These questions will be addressed subsequently.

5.1. Surface approximation
The moving least squares technique can be applied immediately to obtain the surface

approximation. Let us assume that a set of M (scattered) points in space is given. These
points lie directly on the surface to be approximated at locations XI' One way of obtaining
these points is to use vertices of a finite element mesh (or of another polygonal tessellation
of the surface as it is sometimes produced by geometric modelers for different purposes
such as visualization). The approximate surface then may be described by

(32)

where ~ is the parameterization of the surface. Note, that the unknown coefficients are now
3D position vectors. Note also, that the surface constructed does not in general pass through
the prescribed points, i.e., the technique is not interpolating.

Remark 1. The use of a finite element mesh for the purpose of shape definition/
numerical integration seems to be of value also with respect to coupling with the finite
element technique--ef. Belytschko et al. In that case, the finite element mesh would be
readily available without additional cost.

Remark 2. It should be noted that the continuity of the surface approximation was
discussed in general terms in Section 4. As at least C' continuity is required for shape
functions in shells (and to satisfy no-strain rigid body motion conditions, the same shape
functions should be used both for shape and displacement approximation), special tech­
niques must be adopted to model surfaces with creases and similar discontinuities in slope,
e.g. such surfaces might have to be split with appropriate boundary conditions imposed at
the seam.

6. QUALITY OF SURFACE SHAPE APPROXIMATION

The approximate geometry of eqn (32) must be evaluated with respect to several
approximation quality criteria, before it can be used in mechanical computations. Let us
summarize the aspects of interest in the computations:

• Quality of surface shape description.
• Quality of boundary conditions.
• Properties of the EFG approximation with respect to stiffness matrix evaluation.

Remark. It should be noted that the input data to the program working with the EFG
approximation will not, in general, include sufficient geometric information about the exact
surface shape. The minimal input that can be expected is a finite element discretization of the
exact surface. Therefore, the task of shell surface approximation needs to be reformulated as
"approximation of the approximate" shape. A general procedure how to construct an
approximation of the (approximate) shape was therefore developed and is described in the
following.
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(a) quadratic basis ([max =2.7.5 X 1O- 3 R) (b) quartic basis ([max = 3.3 X 10-4 R)

Fig. 1. Color-encoded maps of error in distance of the points of the approximate surface from the
center with respect to the exact sphere (largest error 8max at point "A").

6.1. Overall shape similarity
The surface shape should be approximated sufficiently closely, so that its mechanical

properties, which are governed in most cases by its curvatures and by the "smoothness" of
the shape, are sufficiently close to properties of the exact surface representation.

The approximate surface should be smooth (with an intuitive definition of "smooth").
In the case where the approximate shape shows "bumps" or "dimples" they stiffen the shell
in bending, and a significant part of strain energy might get lost in membrane action. There
is a need for systematic assessment of the smoothness approximation accuracy, which has
not yet been addressed by the authors.

Example 1. The approximation accuracy of the present scheme can be shown on the
example of a segment of a spherical surface. The difference between the exact and approxi­
mate shapes is measured as error in distance from the center of the points on the approximate
surface with respect to the exact radius of the sphere. The results are plotted as color­
encoded maps in Fig. 1, where is shown (a) the accuracy of the scheme (32) using quadratic
basis (maximum error Cmax = 2.75 x 1O- 3R at point "A"), and (b) the accuracy of (32) with
quartic basis (maximum error Cmax = 3.3 X 1O~4R at point "A"). The parametric space of
the surface is shown in Fig. 2. A circle centered at "c" has been added to show good
symmetry properties of the parametric space. Note that, despite the fact that the non­
symmetry does not show in Fig. 2, it can be clearly seen in Fig. I.

6.2. Preservation ofsymmetry
Further, the shape approximation should preserve the symmetry of the structure.

Problems with symmetry preservation are not limited to EFG~it is also difficult for
finite element meshes (especially those generated automatically). Examples are obvious:
approximations to cylinders should have the axis of the cylinder as one of the symmetry
axes, symmetric structure with symmetric boundary conditions should also be symmetric
after shape approximation. The present scheme cannot guarantee that the approximate
surface will preserve planes of symmetry. However, there are devices to ameliorate the
discrepancies, as discussed below.

6.3. Developability
Another issue is the preservation of zero Gaussian curvature: approximations of

developable surfaces should preserve the developability. Otherwise artificial stiffening
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Fig. 2. The parametric space of the spherical surface.
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results, which makes the shell response too stiff. The present scheme can produce develop­
able surface from a developable background mesh, if the vertices of the mesh are converted
into EFG nodes. However, introduction of additional EFG nodes must be done in such a
manner so as not to change the shape of the approximate surface. It means that their
locations would have to be computed from appropriate constraints.

6.4. Evaluation of integrals
The mechanical properties of the shell are represented by the global stiffness matrix.

This stiffness matrix is evaluated by numerical integration over the surface area. Therefore,
the area of the approximate surface should be close to the area of the original surface. The
scheme for surface approximation, which is described below, seems to yield rather good
results in this respect. Another aspect of the numerical integration is the error introduced
by the finite number ofevaluation points. It is clear that the error depends on the smoothness
of the evaluated function. Therefore, if the Jacobian of the mapping from the parametric
space to the surface is rapidly varying, the error incurred by numerical quadrature grows.
A more systematic approach to the assessment of this aspect is needed.

6.5. Curvature approximation
The mechanical properties of the shell depend crucially on the second fundamental

form of the surface, i.e. on its curvatures. The approximation of curvatures was not yet
studied in detail, and a more systematic approach is needed, for instance one of those
discussed in computer graphics literature.

6.6. Boundary approximation
The mechanical response ofa shell is in many cases affected by its boundary conditions.

Especially accuracy ofessential boundary conditions approximation seems to be important.
Let us consider the effect of the moving least-squares approximation on the shape of the
shell surface. The shape depends in general on the size of the support of the weight functions
w(x - Xl)' The larger the support, the closer is the moving least-squares procedure to the
ordinary least-squares. If the polynomial basis Pi is quadratic, and if the support of the
weight functions is very large, the shape approximation becomes essentially a trimmed
piece of a quadric, independently of the actual curvature of the original shell surface. It
means that the approximate surface is always flatter than the exact one, if the points Xl lie
on the exact surface. Consequently, the normals to the approximate surface are not identical
to the exact normals. If an essential boundary condition depends on the direction of the
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=:/=

EXACT

=:/=
APPROXIMATE

Fig. 3. Clamped conditions for an arch and sliding boundary condition for an edge of a surface.
The mechanical effects are different for approximate boundary conditions.

support, as it is the case for instance in sliding support restricting rotation about the tangent
to the boundary curve, the error introduced into the modelling of the mechanical properties
becomes significant (cf. Fig. 3). The same holds in other cases of mechanical supports.

Another aspect is the planarity of boundary curves. If a boundary curve should be
planar, as for example in planar cuts through a shell, or on the plane of symmetry, then
non-planarity may cause artificial stiffening. Assume, for instance, that an edge of the
shell surface becomes wavy after EFG approximation. No-energy sliding in the tangential
direction then becomes impossible, as membrane stresses are generated (see Fig. 3). The
result is a correct answer to a wrong question.

7. PARAMETERIZATION

In order to be able to use the eqn (32) in the context of moving least squares, the
surface must be parameterized, i.e. the parametric space.s;/ of eqn (1) must be defined. The
approach used in the present work is based on the fact, that a polygonalization of the
surface at hand is usually readily available (e.g. in the form of a finite element mesh). It can
describe a surface of arbitrary complexity-of irregular shape (such as trimmed patches),
surfaces with self-intersecting boundary, with any number of holes, and both closed and
open surfaces. Therefore, it is possible to use FE mesh nodes to make them into EFG nodes
X b and to define the approximate surface shape as tp(~) = ¢J.~)Xb where the par­
ameterization ~ is defined by standard FE interpolation on the FE mesh ~ = NK¢K, where
~K are the nodal values of the parameter ~.

Remark. Note that CO continuity of the polygonal tesselation is not required in the
present approach, i.e. the polygonalization may be incompatible.

The way in which the values of the parameter ~K are assigned to the nodes is crucial
to the shape approximation. The smoothness of the mapping from the parametric to the
physical space appears in the integration formulas through the area measure
d.s;/ = Jd~l d~2. Ideally, the Jacobian J should be constant, e.g. J ~ 1. Therefore, the
parametrization should be such as to yield the Jacobian J as close to constant value as
possible.

A good choice seem to be the intrinsic coordinates. They are defined for a number of
simple surfaces (e.g. quadrics), but they are difficult to define for general (free-form)
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Fig. 4. Cylindrical shell surface demonstrating difficulties in the definition of unambiguous par­
ameterization.
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surfaces. Therefore, to accommodate general shapes, an algorithm for generating the nodal
parameter values ~K automatically has been developed.

7.1. Parameterization algorithm
Surface fitting techniques usually work with the real plane as the parametric space. The

surfaces considered here are, on the contrary, trimmed. Ifwe define the parameterization on
the background mesh, the resulting surface approximation becomes in fact a trimmed
moving least squares patch. The usual definition of a patch can be used to define the
surfaces the present algorithm can handle. The patch should have (in the parametric
space!) :

• An exterior boundary described by a single, non-self-intersecting curve of arbitrary
shape.

• Any number of interior boundaries (holes) of arbitrary shape. Also these curves
must be non-self-intersecting.

Consider as an example of a surface that cannot be handled by the algorithm the
cylinder of Fig. 4. The points on the straight line passing through the point shown as a
large black dot cannot be assigned unambiguous values of the parameters ~. This is
demonstrated by the circular path with an arrow. The intrinsic Gaussian coordinates are
no longer single-valued. To avoid these complexities at this stage, only the simple case
specified above is considered in this work. However, the need to represent more general
surfaces can be covered easily by splitting the original surface into pieces that can be
represented as patches, and by glueing them together by continuity boundary conditions,
which are easily accommodated by the Lagrange multiplier technique.

7.1.1. General remarks. The algorithm will be explained on C-Ianguage fragments.
These were slightly edited to provide the desired effect with the least fuss and bother
concerning syntax completeness, naming conventions etc. The advantage of this approach
is that the description is concise.

The crucial data structure used in the algorithm is a queue. The behaviour of a queue
is best described by the operations that can be performed on it. The function names
make_queue() and destroy_queue(q) are self-explanatory. Function enqueue(q, bme) adds
an object bme to the queue in such a manner, that it becomes the "last" object currently in
the queue. Function dequeue(q) takes the "first" object in the queue out (so that it is no
longer present in the queue when the operation finishes). The second object in the queue
thus becomes the first one, and so on. Function queue_empty(q) enquires whether the
queue contains any elements.
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The abbreviation BME stands for "background mesh element". BME is a generic
element-it could be quadrilateral or triangular, with 4 or 9 nodes, etc. The procedures
accepting BME are therefore polymorphic (the appropriate code is chosen at run-time).

7.1.2. Description of the algorithm.

Procedure parameterize().

This is the top-level procedure. It generates the parametrization of a single surface patch.
The Boolean variable p_started is used to flag whether the parameterization has been
started.

Procedure select_start_bme().

The algorithm rolls off by selecting the first BME to be placed in the queue. This decision
has major impact on the results, as (i) it affects the way in which the normals to the surface
are computed, and (ii) it affects the parameterization quality for non-developable surfaces.
The point (ii) will be explained next. It will be assumed here, that the starting BME was
provided as input data (i.e. it was selected by the user). The normal of the first BME is
fixed inside select_start_bme(), so that the first BME can be considered "homogenized"
(see below).

The "while" loop is then entered. A BME is taken from the queue, and its input data
are first adjusted so that the normal is computed correctly for all BME's on the surface
patch.

Procedure homogenize_normal(bme).

Correctly means that the normals point in the "same" direction when the surface is viewed
from one of its sides (with the obvious, intuitive, definition of the "same direction"). This
operation is called normal homogenization. The function does nothing, if the BME normal
has been homogenized before, or if it has been preset by the input data; otherwise returns
"True" if the normal of the BME has been homogenized successfully; "False" otherwise.
To homogenize the normal, the BME queries whether any of its neighbouring BME's has
been homogenized (i.e. whether its normal can be considered for comparison). The input
data (in most cases this means the order of the vertices) is then adjusted, so that the normal
of the BME handled agrees with the normal of the neighbour.

GLOBAL Boolean p-started = False;/* not yet */
PROC
parameterize(Surface *s)
{

BkgMeshElem *bme;
BMEQueue queue = make_queueO; /* The integration-unit queue */
bme = select....starLbme(s); /* choose the first bme */
enqueue(queue, bme); /* push into queue */
p_started = False;/* not yet */
while (!queue_empty(queue)) {

bme = dequeue(queue); /* pop the queue */
if (homogenizeJlormal(bme)) {

parameterize_bme(bme, queue);
} else {

enqueue(queue, bme);/* Failed: try later on the same bme */
}
p_started = True;

}
destroy_queue (queue);

}

Fig. 5. Procedure parameterize( ).
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Procedure parameterize_bmeO.

Once the normal has been homogenized, the parameter values can be generated at the
vertices of the BME. There are two cases here: (i) parameterization of the first BME on
the surface, and (ii) parameterization of any other BME.

Let us first consider case (i): a local cartesian two-dimensional system (x; Y) is
constructed in the plane of the BME in an arbitrary way. The coordinates (XK;YK) of the
vertex K are taken as the surface parameters: ~k = XK, ~k = YK'

Let us now consider the case (ii), with two subcases: (iia) planar surface (i.e. the shell
is actually a plate), and (iib) general surface. Considering first the case (iia), it should be
noted that the coordinate system constructed above for the first BME, can be used anal­
ogously for all subsequent BME's. This resolves the case.

The case (iib) of general surfaces is much more difficult, and a completely satisfactory
solution is yet to be found. The following scheme works quite well for developable surfaces
on which a developable finite element mesh has been constructed (e.g. a mesh on a cylinder
following the straight generatrix), and also for flat non-developable surfaces with "nice"
finite element covering (nice means almost regular mesh). The reason will be given in what
follows.

The functionality of parameterize_bme() can be described in general terms (using
pseudo-code) as shown in Fig. 6. The action 1. is self-explanatory. The action 2. has been
described above as the case (i). The actions 3. and 6. place into the queue all BME's which
share an edge with the currently handled BME. The net effect of these two actions is a
"flooding" effect-the parameterized BME's spread over the surface as if it was flooded.

The action 5. is the most tricky part of the algorithm. It depends on the type of the
BME involved (triangle, quadrangle, etc.). Let us describe the action for a three-noded
triangle first: two of the triangles vertices may have been assigned the parameters before.
In that case we can compute the parameters at the third vertex by noting that coordinates
of two vertices in an arbitrary cartesian system determine the coordinates of third one.
(Actually, the problem is overdetermined by four values, so the length of the triangle side
with the two vertices given must be scaled.)

Analogously can be computed the parameters at two remaining vertices in a quadri­
lateral, when the vertices on any side have been assigned parameters previously. The task
to compute the coordinates of the fourth vertex in a quadrilateral (with three vertices
having been assigned parameters) can be performed by first resolving the clash due to
overdeterminacy (the problem requires setting the third vertex of two triangles, with the
constraint of computing the same location by using both of them; the solution is not
unique).

Let us note that the overdeterminacy of the problems above is due to the angular
defect, associated to the Gaussian curvature of the surface (see Calladine (1983)).

PROC
parameterize.bme(BkgMeshElem *bme, BMEQueue queue)
{

( 1. denote vertices of the BME that were assigned parameterization
before as "bound" vertices; denote the rest as "free" vertices)

if (number of "bound" vertices EQUAL 0) {
( 2. assign initial parameterization)
( 3. push neighbours to queue)

} else if (number of "bound" vertices EQUAL 1) {
( 4. push BME back to queue: we don't know which direction to go )

} else { /* the general case */
( 5. compute parameterization of the "free" vertices)
( 6. push neighbours to queue)

}
}

Fig. 6. The function parameterize_bme( ) in pseudo-code.
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The action 4. is a fall-back for the case that only one vertex has been assigned
parameter values before. In that case, the BME cannot be parameterized and its processing
is postponed.

Now it becomes clear, why the choice of the first BME was important. For the
non-developable surfaces the algorithm will accumulate errors as it proceeds with the
parameterization by flooding. Therefore, it is advantageous to start from the geometrical
center of the surface to minimize the distance the algorithm has to travel to the edges.

8. DISPLACEMENT PARAMETERS

There are at least two ways to write the approximation of displacements. First, it is
possible to write the displacements in the curvilinear basis tp~.

M

um = L qh(~)[Ultp~l(~)+ Vltp~2(~)+ WltO(~)].
1= 1

(33)

However, this approach has a serious drawback: the covariant derivatives then become
indispensable. This means that the equations become rather complicated (the derivatives
of the basis vectors have to be evaluated), and what even more impairs the applicability of
this approach is, that third order derivatives of the shape functions must be computed.
These are (i) unreliable (the higher the derivative, the less accuracy in the approximation),
and (ii) expensive to compute (look at the eqn (31)-the number of matrix terms grows
quickly with each differentiation).

The other approach is very simple. Just express the displacement vector in the global
cartesian basis Ek .

M M

u(~) = L <PI(~)[UIEI + ViE2 + W1E3 ] = L <PlmOUI·
1= I 1= 1

(34)

Remark 1. The approximation introduced in (34) is homogeneous in the polynomial
order for all components of the displacement vector. This spells problems with membrane
locking. The causes of membrane (and shear) locking were studied by Belytschko et al.
(1985), and by Stolarski et ai. (1995). The present EFG approximation has a very interesting
property with respect to membrane locking in that it can be alleviated without resorting to
projections or underintegration. More on this subject is presented below.

Remark 2. Note, that to evaluate the derivatives of the displacement vector u(~) of
(34) one needs only to differentiate the shape function <pl~). This means that the smoothness
of the displacement approximation depends on the smoothness of the shape function. To
compute the strains one needs only second order derivatives with respect to the parameters
~ (recall the eqn (22».

9. STIFFNESS MATRIX

The stiffness matrix can be evaluated by following standard Galerkin procedure,
substituting results of preceding developments. The crucial issue is the construction of the
strain-displacement matrices. These will be detailed below. The stiffness matrix (and for
that matter all matrices) is evaluated by numerical integration. Usual Gaussian integration
has been used throughout.

It should be noted, that one of the characteristic features of the EFG method is the
variable number ofnodal points influencing an integration point. Therefore, it is convenient
to write the strain-displacement matrices in a symbolic form as a sum of submatrices (one
for each nodal point involved, i.e. such a node, whose nodal parameters have support
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interfering with the integration point in question) rather than a matrix with variable
dimension. Note that summation over a repeated index is implied in some equations.

9.1. Membrane strain-displacement matrix
The membrane strain-displacement matrix B(m)[ for the lth nodal point is obtained by

substituting approximation (34) into (16) and gathering the membrane strains e~P in the
vector of eqn (24).

[

<pI.Icp?,·EI

= <P1,2CP?z •E 1

(<P1,2CP?1 +<PI.I cp?z)· E 1

<PI, 1 CP?1 •Ez

<P1,2CP?z •Ez

(<P1,2CP?l +<PI.I cp?z) •Ez

9.2. Bending strain-displacement matrix
The bending strain-displacement matrix B(b)[ for the lth nodal point is obtained by

substituting approximation (34) into (17) and gathering the bending strains p~P in the vector
ofeqn (24).

(36)

The individual terms of the strain-displacement matrix B(b)[ are summarized here:

[B(b)Jlm = (J0)-I[_]°<PI.lltO+<PI,I(CP?11 Xcp?z) + <PI.Z(CP?l xCP?ld)'Em

[B(b)Jzm = (J0)-I [-]°<p1,2ztO + <PI, 1(CP?22 Xcp?z) + <PI.Z(CP?l xCP?zz»)'Em

[B(b)J3m = 2(JO) -I [- JO <PI, 12 to + <Pl, I(cp? z x cp?z) + <PI,2 (CP?1 x cp?I2») •Em. (37)

10. RIGID-BODY MOTION

The rigid-body motion (RBM) should generate no strains. This requirement can be
met by the EFG approximation of (34). It will be shown here that the requirement translates
into a simple constraint on the strain-displacement matrices. This fact can be used as a
help in debugging of the code.

The RBM can be in general written as

(38)

where fi and jj are constant vectors, c is the center of rotation, which can be without loss of
generality assumed to be c = O.
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10.1. Rigid-body translation
The translation part of RBM can be written as

M

URB(~) = 0 = ¢I(~)1JIi1 = 0 L ¢/(~) = 0,
I~ I

(39)

where it was assumed that IJIiI = 0 and the equality L'X: I ¢I = I has been used.
The strain II (here II stands for both membrane and bending strains, and in fact for any

strain) may be related to the displacement parameters by the strain-displacement matrix.
The RBM does not produce any strain for RB translation if II = 0, i.e. if

(40)

The eqn (40) can be satisfied only if

(41)

10.2. Rigid-body rotation
The rotational part of RBM can be written as

(42)

where it was assumed that c = O. It can be verified, that the parameters IJIi I describe RB
rotation, if IJIi1= jj X Xl> with XI being the 3D location of the Ith nodal point, i.e.,

(43)

Substituting (43) into the strain-displacement relation, the following equation is
obtained:

(44)

where e is an antisymmetric matrix with jj as the axial vector. It is probably not worth
while to prove analytically that e in (44) is really zero. However, a numerical check was
easy to implement, and it was fulfilled within machine accuracy.

II. ESSENTIAL BOUNDARY CONDITIONS

An Element-Free Galerkin handling of essential boundary conditions (EBC) is awk­
ward as the shape functions do not vanish on the boundary of the domain (cf. Lu et al.
(1994)). Some of the options are: (i) point collocation (Hein (1993)), (ii) Lagrange multi­
pliers (Belytschko et al. (1994)), (iii) modified Lagrange multipliers (replacement of
multipliers by their physical representations in terms of reaction forces, see Lu et at. (1994)),
(iv) enforcement by finite elements at the boundary (Krongauz and Belytschko (1995)).
The technique (i) lacks precision, therefore it was not considered here. Approach (iii) is
not attractive for Kirchhoff-Love theory, as third-order derivatives of the shape functions
are needed to compute the effective forces on the boundary, and these are expensive to
compute and not very accurate. The technique (iv) seems to be advantageous, but it has
not yet been tested with the plates.
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The approach selected here to enforce the essential boundary conditions is the method
of Lagrange multipliers (technique (ii)). The disadvantages (unpleasant, but not pro­
hibitive) are:

• Additional unknowns increase the problem size.
• Special solver is needed to handle the resulting indefinite system of linear equations

with a structure that resembles that of mixed finite element methods. (Bunch­
Kauffman-Parlett symmetric indefinite factorization as described in [5] was used
here.)

11.1. Tangential and normal displacements
The translational displacement conditions on a boundary curve involve three motions:

1. motion in the direction normal to the surface (given by the vector to),
2. motion in the tangent plane to the surface

2.1 in the direction of the vector TO tangent to the boundary curve,
2.2 in the direction of the vector VO normal to the boundary curve.
Denoting.A. = AvVo+Arro +A,tO the Lagrangean multipliers associated with the motion,

the terms actually appearing in the augmented weak form of (14) are

(45)

These integrals can be easily evaluated by approximating variation of the Lagrangean
multipliers along the boundary curve by the usual form

(46)

where NK are standard Lagrangean shape functions. The linear shape functions with one­
point quadrature were used in all examples described in the subsequent chapters.

11.2. Rotations about tangent to the boundary
The small rotation vector can be expressed from the obvious approximation of the

increment of the normal director

(47)

where () is the small-rotation vector. Using results of eqn (20), the rotation vector () can be
written as

(48)

The component Or of the rotation about the tangent vector rO is obtained readily as
Or = (). TO. The terms corresponding to prescribed rotations about the tangent to the bound­
ary, which actually appear in the augmented weak form of (14), are

(49)

Now, substituting for () from (49), we obtain
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_(]O)-l f l5A,[(q>~1 '-r°)cPI,2-(q>~2 .-rO)cP[.d(Oll[.tO)dS-f OAT(J,ds
0msl °md

11.3. Local coordinate system on the boundary
For reasons described in the Section 6.6, it is desirable, that the local coordinate system

basis on the boundary (i.e. the three vectors vO, to and to) be as close to the exact basis as
possible. Therefore, the following approach was adopted: if the surface in question is of
simple form (e.g. a quadric), the surface normal is computed from the exact definition of
the surface. Also, if the boundary curve is planar, the exact normal to the plane is used to
make the local coordinate system as accurate as possible.

12. WEIGHT FUNCTION

The EFG method leads to a "parameterized" formulation of the discrete problem,
where the parameters are the sizes of the domains of influence of the EFG points. These
domains can be of any shape, but circles are the most common ones (i.e. isotropic weight
functions). The radius of the support circle of the I th point is given by the definition of the
weight function. The weight function needs to be

(i) non-negative, and
(ii) it must hold that

(51)

where R[ is the radius of the support of the Ith node.
The EFG method has been in the meantime presented with a variety of weight func­

tions. The weight function chosen for the Kirchhoff-Love shells is the quartic spline because
of the continuity of the function and of its derivatives. The spline can be put down as a
function of the normalized distance r

{
(l- 6r2 +8r3

- 3r4
)

w(r) =
o

with the normalized distance r being

for I > r ~ 0,

for r ~ 1.
(52)

(53)

The support radius could be computed from the arrangement of the EFG points within
the domain, for instance by requiring the domain of an quadrature point to include a
certain number of adjacent EFG points.

The radius of the support domain affects the solution. It is in this manner, that the
term "parameterized discrete problem" is to be understood. The size of the support can be
arbitrary, provided that it is large enough to yield a regular matrix A(x) of eqn (29). It
must include sufficiently large number of EFG points-at least 6 points for quadratic basis
pj-which must not be located in a special pattern (conic section for quadratic basis).

Further, the larger the support domain, the higher order the approximation achieved
(by including large number of EFG points). There is a limit to it, however. Consider a
weight function radius approaching infinity. The moving least squares approximant then
degenerates to standard quadratic least squares scheme. Increasing the domain of influence
also makes the computation more costly.
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Consequently, there emerges the question whether there is an "optimal" support
radius, and how to compute it. The issue was investigated in a previous paper on thin plates
by the EFG method by the authors (Krysl and Belytschko, 1995). The technique in this
paper was based on quadratic basis, and it was found that the ratio K = R/h (R the support
radius, h the "grid size", which was taken equal to the spacing of the EFG nodes) showed
two points at which higher accuracy of the solution can be obtained - K ~ 3.4 and K ~ 3.9.
As the irregular grids required in general larger support, the value of K ~ 3.9 had been
adopted in Krysl and Belytschko (1995). It should be noted, that both hand R are measured
in the parametric space, therefore the results of Krysl and Belytschko apply also for shells.
However, the present paper uses not only quadratic basis, but also a quartic basis. Higher
order polynomial basis requires larger support to achieve optimal accuracy, however, and
consequently another value of optimal radius was sought for the quartic basis. Again the
search was based on numerical experiments, which gave a single optimal value K ~ 6.1
(with overall higher accuracy, however).

13. MEMBRANE LOCKING

The membrane locking appears in shells (and beams) in which the membrane action
is coupled with bending. The reason for membrane locking appearance is due to different
approximation orders for the membrane and bending strains, so that the actual inex­
tensional bending becomes polluted by parasitic membrane forces.

Membrane locking is usually significantly moderated by high-order approximation.
Consequently, membrane locking should be significantly ameliorated in the present numeri­
cal model by increasing the support of the EFG nodes, as this increases the order of the
approximation (to some extent-note the discussion in Section 12). Also, increasing the
order of the polynomial basis Pi of eqn (26) should have similar effect and indeed, quartic
basis practically removes membrane locking.

These theoretical considerations have been confirmed by numerical experiments (e.g.
inextensional bending of cylindrical shell) as shown in the following section.

14. NUMERICAL EXAMPLES

14.1. Discretization
The discretizations of the examples considered in this section were constructed in the

following manner: geometric subdivisions of the domains in the form of quadrilaterals
were used to define the shell surface by the above described moving least squares procedure.
The EFG points were generated at the vertices of these quadrilaterals. The grids were
regular or quasi-regular (for the hemispherical shell). It should be noted, that the present
method associates three degrees of freedom (OOF) to a node, while most finite element
models possess five or six OOF's per node. Therefore, the number of displacement OOF's
is in the EFG models by 40 or 50% smaller than in finite element models with the same
spacings between nodes.

The numerical quadrature was performed on the quadrilaterals by Nc x Nc Gaussian
integration. The quadrature order was adopted as N G = 6 basing this decision on previous
experiments in Krysl and Belytschko (1995).

The essential boundary conditions have been enforced by the Lagrange multiplier
method. The Lagrange multipliers were defined at the locations of the EFG points on the
boundary. Linear interpolation was used on the boundary between the EFG points. One­
point quadrature has been applied on the spans.

14.2. Interpretation of the results
The support domains of all the EFG points were the same, so that we have R1 = R.

Let us define a parameter K given by
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R
K=­

h'
(54)

with R being the support radius (radius of the circle in which the shape function associated
to an EFG node is non-zero), and h is the "mesh" size. The mesh size is for regular
rectangular grids identical to the length of the longer side of the quadrature domain. In
cases where the quadrature domains are of different shape, the mesh size h will be explicitly
defined.

The results are dependent to some extent on the sizes of the domains of influence.
Therefore, the results will be given with an indication of the support size that was used to
compute them. As previous experiments for plates have shown, there are some "higher
accuracy" support sizes. These issues have been discussed in Section 12.

To help in the interpretation of the results, Fig. 7 presents an overview of the values
of the parameter K for regular grid composed of square integration domains with respect
to the number ofEFG points included in the circle of radius R (the EFG nodes are located
at the vertices of the grid).

The test problems below are based on the MacNeal-Harder benchmarks as modified
in the obstacle course of Belytschko et al. (1985) ; extensive details on these problems can
be found in the latter reference.

14.3. Pinched cylinder
The structure is a free cylinder loaded by a pair of pinching loads P = I. The three

symmetry planes provide the essential boundary conditions. The cylinder boundary curves
are supported by a diaphragm which is flexible out of plane, but rigid in its plane. The
cylinder length and radius are L = 600 and R = 300, respectively. The thickness is t = 3.
The material properties are E = 3 X 106 and v = 0.3. (All data in consistent physical units.)
The analytical solution gives for the deflection under the load the value 1.82488 x 10- 5

,

which is used to normalize the numerical results in Fig. 8. The parameter K was adopted in
this computation as K = 6.1, and the size h was equal to (nR)j(2M), with M being the
number of grid spacings along each side. The results are given for the quartic polynomial
basis. It can be seen that the performance of the EFG technique compares well with high­
performance finite elements, although worse results have been obtained for coarser grids
(partly due to the fact that the grids did not contain sufficient number of EFG nodes to
produce approximation of required order).

14.4. Scordelis-Lo barrel vault
The Scordelis-Lo barrel vault is a short cylindrical section loaded by gravity forces.

The membrane and bending energies are almost equal (within 2% difference). Therefore,
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the membrane response is significant in this problem. The length of the cylinder is L = 50,
radius R = 25, thickness is t = 0.25 and the span angle of the section is If' = 80°. Material
properties are: E = 4.32 X 108 and v = O. The parameter K was adopted in this computation
as K = 3.4 and the grid size h was equal to (nR)/(2M), with M being the number of grid
spacings along each side. There is a converged numerical solution of magnitude 0.3024 for
the vertical deflection of the center of the free edge, which was used to normalize the results
in Fig. 9. The polynomial basis adopted for this problem was quadratic as the shell is
relatively flat (and the quartic polynomial basis is applied mainly to reduce membrane
locking in bending-dominated cases). The present EFG method can be seen to give very
satisfactory results in comparison to high-performance elements of Belytschko (1985) and
Simo (1989).

14.5. Hemispherical shell
The hemispherical shell problem appears in the computational literature in two

varieties: a shell with an opening at the top, and full hemisphere. The present results were
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obtained for the latter as in Belytschko et al. (1985) (the problem thus becomes more severe
as the quadrilaterals are distorted out-of-plane). The shell is pinched by two pairs of
forces-in- and outward directed-of magnitude P = 2. The material constants are:
E = 6.825 X 107 and v = 0.3. The sphere radius is R = 10, and the thickness t = 0.04. The
displacements in the direction of loads are the same, and the analytical value of 0.0924 was
used to normalize the numerical results. The parameter K was adopted in this computation
as K = 6.1, and the size h was equal to (nR)/(2M), with M being the number of grid spacings
along each side. Results are given for EFG method with (i) quadratic basis, (ii) quadratic
basis and reduced integration of the membrane stiffness (plot marked SRI), and (iii) quartic
basis (Fig. 10). It can be seen that the quartic basis produces faster convergence than the
quadratic one, and also it can be concluded that the reduced integration is of dubious value
here (also with respect to the use of the present technique in cracked shells, where the
membrane response is very important, and should not be underintegrated). The relatively
poor results for coarser grids are partly due to the fact that the grids did not contain
sufficient number of EFG nodes to produce approximation of required order.

14.6. Inextensional bending of cylinder
This problem shows the behaviour of the present numerical model in relation to the

membrane locking. The exact solution is based on inextensional bending of cylindrical
shells, and is given by a series in the Timoshenko-Krieger monograph (1959) (p. 432). The
setup: unsupported short cylinder is pinched by concentrated forces. Due to symmetry, only
one eighth of the structure needs to be considered with appropriate boundary conditions on
the planes of symmetry. Displacement under the force is obtained as 0.149(2Pa3)/(nDI),
and horizontal displacement (increase in radius) is O.l37(2Pa3)/(nDI), with P being the
force, a the radius of the cylinder, I its length, and D = (Et3)/(12(1-v2» the bending
stiffness.

Figure 11 shows the dependence of the solution accuracy on the support radius for a
regular grid 9 x 9 EFG nodes. The size h was equal to (nR)/(2M), with M = 8 being the
number of grid spacings along each side. It can be seen, that the increase in support radius
alleviates membrane locking for the quadratic basis Pj, and use of the quartic basis removes
membrane locking altogether. The tags Q = 3 and Q = 4 in this figure give the number of
quadrature points.

Remark. The fact that the poor solutions really were due to membrane locking can be
deduced from energy partitioning. The main part of the energy should be stored in this case
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in bending, the poor solutions possessed large share of membrane energy, however. (For
the quadratic basis, membrane energy accounted for 76.81 % for K = 2.2 in comparison
with 2.25% for K = 5.1, and for the quartic basis membrane energy accounted for less than
2.0% for all ratios K.)

15. CONCLUSIONS

The Element-Free Galerkin (EFG) method has been applied to thin (Kirchhoff) shells.
Isotropic material law and uniform shell thickness were assumed for simplicity, the results
apply directly to any material law and any thickness variation, however.

The domain has been covered by a set of simple subdomains (background elements)
for the purposes of surface shape approximation and also of numerical integration. Quadri­
laterals were selected for the numerical implementation in this work; the geometric sub­
division is immaterial, however, and any covering of the domain would do. The EFG nodes
have been generated at the vertices of the geometric subdivision.

The shape of the surface has been approximated by the moving least squares technique
from the vertices of the background mesh. An algorithm for the automatic parameterization
of the background mesh has been proposed. Numerical integration was carried out on the
background elements by Gaussian quadrature. A quadrature at 6 x 6 integration stations
was adopted.

The polynomial basis used is a complete polynomial of second degree in the spatial
coordinates. Therefore, consistency was achieved automatically. The resulting approxi­
mation is governed by the continuity of the weight function, which was adopted as a quartic
spline. This function possesses requested C' continuity within the support, as well as on its
boundary. In fact, due to the properties of the quartic spline weight function of (52), C2

shape functions are constructed. The implications are that smooth internal resultants can
be obtained without any re-interpolation or smoothing. Thus, while the finite element
construction of C' numerical approximation is difficult and unsatisfactory so far, and while
various devices to avoid the need for C I ab initio are employed (discrete Kirchhoff theory,
hybrid stress, or even transition to CO theory), the current moving least squares method
achieves C' approximation in a very straightforward manner.

The essential boundary conditions were enforced by Lagrange multipliers. One-point
quadrature was applied along the spans between the EFG nodes on the supported bound­
aries. This is not the ideal lllethod; however, more efficient and versatile techniques are
under concurrent development.



3080 P. Krysl and T. Belytschko

The high accuracy and versatility of the present numerical approach have been dem­
onstrated on a number of examples from the standard obstacle course for shells from
(Belytschko, 1985). The EFG method is flexible with respect to the construction of the
shape functions. Therefore, it is possible to optimize the accuracy of the method by the
choice of the weight function, by the selection of the support of the EFG nodes (given by
the weight function definition). It was demonstrated that the method yields good results
for quadratic polynomial basis. The membrane locking which appears in the numerical
model was alleviated by enlarging the domains of influence of the EFG nodes for the
quadratic basis, and it was removed completely by using quartic polynomial basis.
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